

DPP-2 (Work, Energy \& Power)

Video Solution on Website:-

Video Solution on YouTube:-

Written Solution on Website:-

https://physicsaholics.com/home/courseDetails/38

https://youtu.be/mcvXRjwmXac

Q 1. If velocity of a body is twice of previous velocity, then kinetic energy will become
(a) 2 times
(b) $\frac{1}{2}$ times
(c) 4 times
(d) 1 time

Q 2. A spring 40 mm long is stretched by the application of a force. If 10 N force required to stretch the spring through 1 mm , then work done in stretching the spring through 40 mm is
(a) 84 J
(b) 68 J
(c) 23 J
(d) 8 J

Q 3. A block of mass 0.1 kg attached to a spring of spring constant $400 \mathrm{~N} / \mathrm{m}$ is putted rightward from $x_{0}=0$ to $x_{1}=15 \mathrm{~mm}$. Find the work done by spring force
(a) 0.045 J
(b) -0.045 J
(c) 0.45 J
(d) -0.45 Js

Q 4. A block of massm is moving with an initial velocity V_{o} towards a stationary spring of stiffness k attached to the wall as shown in figure. Find the maximum compression in the spring

(a) $\left(\sqrt{\frac{m}{k}}\right) v_{o}$
(b) $\left(\sqrt{\frac{k}{m}}\right) v_{o}$
(c) $\left(\sqrt{\frac{1}{m k}}\right) v_{o}$
(d) $\left(\sqrt{\frac{m v_{o}}{k}}\right)$

Q 5. When a spring is stretched by 2 cm , magnitude of work done by spring is 100 J . If it is stretched further by 2 cm , the magnitude of work done by spring will be
(a) 100 J
(b) 200 J
(c) 300 J
(d) 400 J

Q 6. A mass of 0.5 kg moving with a speed of $1.5 \mathrm{~m} / \mathrm{s}$ on a horizontal smooth surface, collides with a nearly weightless spring of force constant $\mathrm{k}=50 \mathrm{~N} / \mathrm{m}$. The maximum compression of the spring would be
(a) 0.15 m
(b) 0.12 m
(c) 1.5 m
(d) 0.5 m

Q 7. A particle moves in a straight line with retardation proportional to its displacement. Its loss of kinetic energy for any displacement x is proportional to
(a) x^{2}
(b) e^{x}
(c) x
(d) $\ln x$

Q 8. Natural length of a spring is 60 cm , and its spring constant is $4000 \mathrm{~N} / \mathrm{m}$. A mass of 20 kg is hung from it. The extension produced in the spring is $\left(g=9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$
(a) 4.9 cm
(b) 0.49 cm
(c) 9.4 cm
(d) 0.94 cm

Q 9. A body of mass 8 kg is moved by a force $\mathrm{F}=(3 \mathrm{x}) \mathrm{N}$, where x is the distance covered Initial position is $\mathrm{x}=2 \mathrm{~m}$ and final position is $\mathrm{x}=10 \mathrm{~m}$. If initially the body is at rest find the final speed
(a) $12 \mathrm{~m} / \mathrm{s}$
(b) $4 \mathrm{~m} / \mathrm{s}$
(c) $6 \mathrm{~m} / \mathrm{s}$
(d) $2 \mathrm{~m} / \mathrm{s}$

Q 10. A block is initially at rest on a horizontal frictionless surface when a horizontal force in the positive direction of an axis is applied to the block. The force is given by $\vec{F}=$ $\left(1-x^{2}\right) \hat{\imath} \mathrm{N}$, where x is in meters and the initial position of the block is $\mathrm{x}=0$. The maximum kinetic energy of the block is $\frac{2}{n}$ Jin between $\mathrm{x}=0$ and $\mathrm{x}=2 \mathrm{~m}$. Find the value of n ?
(a) 1
(b) 2
(c) 3
(d) 4

Q 11. A block of mass 5.0 kg slides down an incline of inclination 30° and length 10 m . Find the work done by the force of gravity
(a) 300 J
(b) 245 J
(c) -145 J
(d) 65 J

Q 12. In the pulley-block system shown in figure, strings are light. Pulleys are massless and smooth. System is released from rest. In 0.3 seconds work done by tension on block of mass 2 kg ? $\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$

(a) 2 J
(c) -1.5 J
(b) 6 J
(d) -2 J

Answer Key

Q. 1 c	Q. 2 d	Q. 3 b	Q. 4 a	Q. 5 c
Q. 6 a	Q. 7 a	Q. 8 a	Q. 9 c	Q. 10 c
Q. 11 b	Q. 12 d			

Physics DPP

DPP-2 WEP: Kinetic Energy, Work Done by Spring Force, Work Energy Theorem
By Physicsaholics Team

Solution: 1

$$
\begin{aligned}
& K E=\frac{1}{2} m v^{2} \\
& K E \alpha V^{2} \\
& K E_{1} \\
& K E_{2} \\
& K E_{2}=\left(\frac{V}{2 V}\right)^{2}=\frac{1}{4} \\
& K \text { Ans.c }
\end{aligned}
$$

Solution: 2

$$
\begin{aligned}
F= & k x \\
10 & =k(1 \mathrm{~mm})-(1) \Rightarrow k=\frac{10}{10^{-3}} m \Rightarrow 12
\end{aligned}
$$

Solution: 3

$$
\begin{aligned}
& k=4 \omega N / m \\
& \omega=\frac{1}{2} k\left(n_{i}^{2}-n_{f}^{2}\right)=-\frac{1}{2} k\left(x^{2}-x_{i}^{2}\right. \\
& \omega=\frac{-1}{2} k\left[\left(15 \times 10^{-3}\right)^{2}\right. \\
& \omega=-\frac{1}{2} \times 4+0 \times 225 \times 10^{-6}
\end{aligned}
$$

$$
=-150 \times 10^{-4}
$$

$$
\frac{w=-0.9453}{(0)}
$$

Ans.
Ans. b

Solution: 4
Let, max compression: $=n_{0}$
so;, From work Energy theorem

$$
\begin{gathered}
\omega_{\text {Total }}=\Delta K E \Rightarrow W_{\text {spring }}+W_{N}+W_{\text {ing }}=\Delta K \\
\omega_{\text {spring }}=k E_{s}-k E_{i} \\
-\frac{1}{2} k x_{0}^{2}=0-\frac{1}{2} m v_{0}^{2} \\
\frac{y}{2} k v_{0}^{2}=\frac{m}{k} v_{0}^{2} \\
x_{0}^{2}=\frac{m}{k} v_{0}^{2} \\
x_{0}=\frac{n}{k} v_{0}^{2}
\end{gathered}
$$

at max compression

Ans. a

Solution: 5

$$
\begin{aligned}
& \qquad \begin{array}{l}
\omega=-\frac{1}{2} k\left(x_{f}-x_{i}\right)^{2} \\
|\omega|=\frac{1}{2} k\left(x_{1}-x_{i}\right)^{2} \\
\frac{\left|\omega_{1}\right|}{\left|\omega_{2}\right|}=\frac{\frac{1}{2} k\left(\left(2 \times 10^{-2}\right)^{2}-0^{2}\right)}{\frac{1}{2} k\left(\left(1 \times 10^{-2}\right)^{2}-\left(2 \times 10^{2}\right) 2\right)^{2}} \\
100
\end{array}
\end{aligned}
$$

$$
\left|\omega_{2}\right|=300 \sqrt{J} \text { ans }
$$

Ans. c

Solution: 6

$$
\omega_{T}=\Delta K E
$$

at max compression; $V \neq 0$

$$
\begin{aligned}
& \omega_{\text {spring }}=k E_{+} \rightarrow k G_{i} \\
& -\frac{\gamma}{2} k x^{2}=0-\frac{1}{2} \min ^{2} \\
& n=\frac{\lambda \sqrt{5}}{10} \\
& x=0.15 \mathrm{~m} \text { Aus. }
\end{aligned}
$$

Ans. a

Solution: 7

$$
a \propto-x
$$

$a=-k n \quad(k=$ Proportional Constant)

$$
\begin{aligned}
& F=m a \\
& F=-k m x \\
& w_{T}=\Delta k E \\
& \Delta K E=\int K d x \\
& S R_{E}=-k m \frac{x^{2}}{2}
\end{aligned}
$$

Ans. a

Solution: 8

$$
\begin{aligned}
& 1=60 \mathrm{~cm} \\
& k=4000 \mathrm{~N} / \mathrm{m} \\
& m=20 \mathrm{~kg}
\end{aligned}
$$

$$
k x=m g
$$

$$
\begin{aligned}
& x=\frac{m g}{A} \\
& x=\frac{36+9 . g}{4.000}
\end{aligned}
$$

$$
x=\frac{3 b}{200}=\frac{43}{1000}=0.049 \mathrm{~m}
$$

$x=459 \mathrm{~cm}$ Ans.

Solution: 9

$$
\begin{aligned}
& F=3 x \\
& \omega_{T}=\Delta K E \\
& \int_{n_{1}}^{n_{2}} F \cdot d x=\frac{1}{2} m v_{1}^{2}-\frac{1}{2}+2 x^{2} \text { o } \\
& \int_{2}^{10}(3 x) d x=\frac{1}{2} 8\left(x^{2}\right) \Rightarrow \\
& \begin{array}{l}
4 \times v^{2}=3 \times\left[\frac{10^{2}}{2}+\frac{2^{2}}{2}\right] \Rightarrow 4 \times v^{2}=3 \times \frac{96}{2} \\
\left.v^{2}=3 \times 96\right)^{26} 2
\end{array} \\
& V=6 \mathrm{~m} / \mathrm{s} \text { Ard. } \\
& \text { Ans. c }
\end{aligned}
$$

Solution: 10

$$
\vec{F}=\left(1-x^{2}\right) \hat{\imath}
$$

when $F=+v e$

$$
\begin{aligned}
& a=+v e \\
& \Rightarrow v T \Rightarrow K E T
\end{aligned}
$$

for $n \in[0,2]$

$$
F \geqq 0 \Rightarrow
$$

but for $X \in[0,2]$
K.E. is maximum at $x=1, k E_{\max }=\frac{2}{3} \mathrm{~J} \Rightarrow \frac{2}{3}=\frac{2}{n} \Rightarrow n=3$ Ans.

Solution: 11

Ans. b

Solution: 12

$$
\begin{align*}
& 2 \cdot g-7=2 a \tag{1}\\
& 27-9=1(a / 2) \tag{2}
\end{align*}
$$

from eq" (1) \& (2)

$$
\begin{aligned}
& 49-2 T=4 a \\
& 2 T-g=a, 2 \\
& 3 g=9 a / 2 \\
& a=\frac{2 g}{3}
\end{aligned}
$$

Displacement of

$$
2 \mathrm{~kg} \text { in } 0.3 \mathrm{sec}
$$

$$
s=\frac{1}{2} a t^{2}
$$

$$
2
$$

$$
=\frac{1}{2} \times \frac{2 g}{3}(0.3)^{2}
$$

$$
\begin{aligned}
& 2 g \text { in }=2 \times \frac{2 g}{3} \\
& T T=2 g / 3
\end{aligned}
$$

For Video Solution of this DPP, Click on below link

Video Solution on Website:-
https://physicsaholics.com/home/courseDetails/38

Video Solution on YouTube:-

Written Solution on Website:-
https://youtu.be/mcvXRjwmXac
https://physicsaholics.com/note/notesDetalis/43

Chalo Nikis

